If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14b^2+106b-180=0
a = 14; b = 106; c = -180;
Δ = b2-4ac
Δ = 1062-4·14·(-180)
Δ = 21316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{21316}=146$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(106)-146}{2*14}=\frac{-252}{28} =-9 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(106)+146}{2*14}=\frac{40}{28} =1+3/7 $
| 2/3x-10=8/10 | | -21=4f+6f | | -x+7=-6-13 | | -143x=140 | | 1/3(x+6)=12; | | 6(y-5)-2y=10 | | 0.5*(x*x*x)+650x=150000 | | (6x+20)^2+(4x)^2=360 | | 72=5x+336 | | 2(3+9x)=-14-2x | | -4a-7-6a=15 | | 72=5x+28 | | 71=13t-5+4t | | 3t-6=0.T= | | -5x-9=-3-9 | | 82-5x+2=2x-9 | | 4-2z=-8-6z | | 82+5x+2=2x-9 | | 2/6x+20=60+44 | | -6r-8r=35 | | 0=-6f+6f | | 39-6n-50=75 | | 2/6x+20=60 | | w+45=5w+41 | | 3z−3=2+8z | | X÷3-4=x-10 | | 2/6x+3=30 | | 10÷x-1=0.22 | | -8+6t=6t−8 | | 3(2k+6)=-31 | | 3z+(3+3z)-3=-50 | | -16+8=6x-13+21 |